
3/23/2021

1

Regular Expressions in Python

What Is a Regular Expression?

•A pattern that matches all, or part of,
some desired text string

•Pattern is compared to a given "target"
text string

•Succeeds or Fails depending on whether
the target string contains the desired
text string

•Python syntax:
re.search('pattern', 'target-string')

3/23/2021

2

Two aspects of using regular expressions

•Identifying a desired pattern to search
for
- "a 10-digit phone number"

- "a first name, middle initials, last name"

- "a color, followed by a noun"

•Using regular expression syntax to
create the desired pattern
- the main concern of these slides

first RE exercise – see the power

• download and open file "montcs.bloomu.edu/Datasets/Logfiles/error.log.1"
• search for lines containing "Mar 11"

- import re

- mo = re.search(r"Mar 11", line)

- print(mo.group())

- print(mo.groups()) # "groups(), not group()

• search for lines containing any date in March

- mo = re.search(r"Mar \d\d", line)

- print(mo.group() , '\n', mo.groups()) # "group() versus groups()

• search for lines containing "Mar \d\d", keep the date parts

- mo = re.search(r"Mar (\d\d)", line)

- print(mo.group() , '\n', mo.groups()) # "group() versus groups()

• search for lines containing "Mar \d\d", keep the dates and times

- mo = re.search(r"Mar (\d\d) (\d\d:\d\d:\d\d)", line)

- print(mo.group() , '\n', mo.groups()) # "group() versus groups()

3/23/2021

3

A remark…

•Regular expressions are implemented in many
languages, in not-quite-identical ways.
- Simple Regular Expressions

- POSIX Basic Regular Expressions (BREs)

- POSIX Extended Regular Expressions (EREs)

- Perl Compatible Regular Expressions (PCREs)

•Python uses a version of PCRE
- We will look at regular expressions (“regexes”) in Python. Most

of the material will hold for other versions as well.

• A summary is available in
montcs.bloomu.edu/Information/Regex/cheatsheet.pdf

Simple Examples

•import re – use regular expressions

•mo = re.search('dab', 'abracadabra')
- is successful, mo.group() contains 'dab'

- similar to 'abracadabra'.find('dab')
» doesn't show regexes' power

•mo = re.search('E', 'ABEadeABCDE')
- successful, mo.group() contains the first 'E'

•lst = re.findall('E', 'ABEadeABCDE')
- successful, lst contains both 'E' occurrences

3/23/2021

4

More examples

•mo = re.search('dab', 'hocus-pocus')
- fails: mo equals None

•re.search('dog', 'digsANDdogs')
- successful

- matches the conjunction of 'd', 'o', and 'g'

•mo = re.search('Cat', 'catch')
- fails unless case-sensitivity is turned off

Search Details

• match_object = re.search(
regular_expression , target_string ,
startpos , endpos)

- match_object contains information about the match
» what exactly matched, where, etc.

» (None if no match)

- startpos, endpos are optional – specify where to
start, stop searching within target_string

• match_object = re.match(
regular_expression , target_string)

- like re.search(), but regular expression must match
entire target string

3/23/2021

5

More remarks

•Regular expressions are commonly
called regexes, or R.E.s

•Interesting regexes form variable
patterns, i.e. can match more than one
distinct string

•Useful regexes are formed to match a
desired category of strings
- example: a phone number –
a string of 3 digits, a separating character, 3
more digits, another separating character,
then 4 digits

Building a regex, formally

•Each distinct, matchable character in the
pattern is an atom
- a single atom is a valid, minimal regex

•Two adjacent atoms are a conjunction
- logical "AND"

- a conjunction is also a valid regex

•A disjunction (logical "OR") of two regexes
forms a regex
- symbolized with "|" (a "pipe" or "vertical bar")

•A regex in parentheses is an "atomic" regex
- Can be used in a conjunction or disjunction

3/23/2021

6

Disjunction examples

•mo = re.search('a|b|c|d', 'ABCDbcdefg')
- successful, mo.group() contains the 'b'

•mo = re.search('dog|cat', 'catsANDdogs')
- successful, mo.group() contains 'cat'

•mo = re.search('do(g|c)', 'documentdogs')
- successful, mo.group() contains 'doc'

•mo = re.search('|', 'abcd|efgh')
- successful (?)

- mo.group() probably isn't what you expect

Atoms

•A normal character matches itself
- called a literal

- Previous examples mostly consisted of literals

•Escape sequences represent some literals
- '\n', '\t'

•Some characters have special meanings in
regexes
- period . , caret ^ , dollar sign $

- vertical bar | , question mark ? , asterisk * , plus +

- Parentheses () , square brackets [] , curly braces {}

- backslash \

3/23/2021

7

Special Characters

•Periods are very special atoms
- Match any single character (with a few exceptions)

•Caret, dollar sign
- Positional items, match at a location instead
of a character

- caret ^ – matches the beginning of a string

- dollar sign $ – matches the end of a string

•Example:
- mo = re.search('^dog|cat$', 'catsANDdogs')

» fails – requires "dog" at beginning of line
or "cat" at end of line

Special character examples

pattern matches

d.g dog, dig, dDg, d.g …

d\.g d.g only

dog* do, dog, dogg, doggggggggggg …

dog+ dog, dogg, doggggggggggg …

dog? do, dog

^dog dog at beginning of string only

dog$ dog at end of string only

[dog] d, o, or g only

[aeiouAEIOU] any uppercase or lowercase vowel

(dog) dog as a group

3/23/2021

8

Escaped characters

•Backslash removes special meanings from
special characters

- mo = re.search('\|', 'abcd|efgh')
» successful, matches the '|'

- mo = re.search('C:\\M', 'C:\\My Documents')
» successful, matches the '\' backslash

» "escaped" backslash in both strings

- mo = re.search('C:\\M', 'C:\My Documents')
» fails, the target string contains an escaped capital
M (which has no special meaning, so is just 'M')

Quantifiers

•A particular strength of regexes is the ability to
specify repetitions of a simple pattern.
Quantifiers control how many occurrences of
an atom to match.

• ? – match 0 or 1 occurrence of preceding atom

• + – match 1 or more occurrences of preceding
atom

• * – match 0 or more occurrences of preceding
atom

•By default, quantifiers are greedy – they match
as many occurrences as possible

3/23/2021

9

Simple quantifier examples

•abcd?efg
- Matches abcefg

- Matches abcdefg

- Doesn't match
abcddefg

•abcd+efg
- Matches abcdefg

- Matches abcddefg

- Matches
abcddddddefg

- …

•abcd*efg
- Matches abcefg

- Matches abcdefg

- Matches
abcddddddddefg

•abc\d*efg
- Matches abcefg

- Matches abc7efg

- Matches
abc9876543210efg

Constrained Quantifiers

•Curly braces define a range of matches:

- {n} – match exactly n instances of the
preceding atom

- {n,m} – match between n and m instances of
the preceding atom

- {n,} – match at least n instances of the
preceding atom

- {,m} – match at most m instances of the
preceding atom

3/23/2021

10

Quantifier examples

•re.search('x{3}', 'ABCxxxxxxxdefg')
- succeeds, matches the first 3 'x' characters

•re.search('(cat){,2}', 'catcatcatcatcat')
- succeeds, matches the first two 'cat' pieces

•re.search('ab{2,4}c', 'abcabbbbbc')
- fails, requires 2-4 'b' characters

•re.search('ab{2,4}c', 'abcabbbc')
- succeeds, matches the 'abbbc' at the end

try

•Match strings that look like numbers
- 0, 1, 2, etc.

- 12345 or maybe 12,345

- 3.14159

- 123.4567890

•Match strings that look like telephone
numbers
- 570-389-4500

- (570) 389-4000, (570)389-4000
» what's the difference?

3/23/2021

11

Special Characters - Summary

name symbol(s) meaning

period . match any single character

caret ^ match at beginning of string

dollar sign $ match at end of string

asterisk *
match arbitrary number (0 or more) of
preceding regex

plus sign + match 1 or more of preceding regex

question mark ? match 0 or 1 of preceding regex

square
brackets

[]
match any 1 of the characters within the
brackets

parentheses ()
collect ("group") a regex into an atom;
can be used with * + ?

curly braces
{n} {n, m}
{n, } { , m}

requires exactly n occurrences, or at least
n and no more than m, of the preceding
regex

backslash \
escapes (cancels) the following
character's special meaning

Character classes

•A class matches any one of a set of characters:

•Predefined classes represented by
escaped characters
- \d – matches any single numeric digit 0 .. 9

- . – "universal class", matches any character

•User-defined classes created with []
- [aeiouAEIOU] – matches any single vowel

3/23/2021

12

exercise

• download and open file

"montcs.bloomu.edu/Readings/Alice-in-Wonderland.txt"

• search for, count, and save lines containing any
occurrence of the word "the" - but not words
containing "the", such as "other"

- print count of matching lines

• search for, count, and save lines containing words that
include "the", such as "other" - but not "the" by itself

- print count of matching lines

- count number of occurrences of each word?

- combine capitalization variants, such as "father" and "Father"?

Predefined character classes

escaped character Class of characters

\d
any digit
(same as [0123456789] or [0-9])

\D any non-digit

\w
any "wordlike" character
(any alphanumeric)
(same as [a-zA-Z0-9_])

\W
any non-wordlike character
(punctuation, whitespace, etc.)

\s
any "whitespace" character
(same as [\n\t\r\v\f])

\S any non-whitespace character

\b any word boundary

\B any non-word boundary

3/23/2021

13

Using predefined classes in patterns

- '\' is an escape character in normal text
strings, as well as in regexes

•Text string as regex: the escape
character itself must be escaped
- '\\bbook\\b' – matches " book " but not
"textbook" or "bookie"

•Alternative:
use raw strings, indicated with an 'r'
- r'\bbook\b' – also matches " book " but not
"textbook" or "bookie"

…general guideline

•Use raw strings to define regexes

•Always works, avoids some ambiguities

•For example:
- re.search(r'ate\n', 'skate\n') – matches,

is the same as
re.search('ate\n', 'skate\n') – matches

- re.search(r'ate\\n', 'skate\\n') – matches,
is not the same as

re.search('ate\\n', 'skate\\n') – NO match
» matches against 'skate\n' instead

3/23/2021

14

User-defined character classes

•Square brackets [] create classes
- Any character within brackets is matched

•Examples:

- [02468] – matches any even digit (or 0)

- [:;.,?-_=+%&!~^&*$@#()`'"] – matches
any of a bunch of punctuation symbols

•Contiguous ranges of characters allowed

- [-.,0-9] – matches minus sign, period,
comma, or any numeric character
» dash at beginning is just itself

Negated classes and characters

•Caret at the beginning of a class negates
the category
- [^aeiou] – matches any character except a
lowercase vowel

- [aeiou^] – matches any lowercase vowel, or
a caret

•Class can contain single character
- Provides negation of single characters

- [^X] – matches any character except X

- [^X]+ – matches one or more non-X chars

3/23/2021

15

The re Module:
Searches versus Matches

•re.search() function looks for a pattern
match anywhere within a target string
- "^" anchors search to beginning of line

- "$" anchors search to end of line

•re.match() function matches a pattern to
the entire target string
- "^", "$" anchors not needed

- less general, more efficient to execute than
re.search()

re.search() vs. re.match() Example

•Find a Social Security number anywhere
in a line:

- re.search(r'\d{3}-\d\d-\d{4}', line)

•Find a Social Security number that is
the only thing on the line:

- re.search(r'^\d{3}-\d\d-\d{4}$', line)

•Also finds a Social Security number as
the only thing on the line:

- re.match(r'\d{3}-\d\d-\d{4}', line)

3/23/2021

16

Groups

•Parentheses (“parens”) collect atoms into a
group that acts like an atom
- (abc) is a group containing three characters

- Parentheses must be escaped if you want to match
literal parentheses!

» BREs use \(and \) for grouping; (and) match themselves

•Groups can be affected by quantifiers
- (abc)+ matches “abc”, “abcabc”, “abcabcabcabc”
…

•Groups can also be referred to elsewhere
- More on this later.

Match Objects: Working With Groups

•re.search() and re.match() return a
match object when they succeed

•Match object contains information about
the match,
including any parenthesized groups

•Matched, parenthesized groups can be
retrieved and used in further processing

•match_object.groups() returns all groups
- match_object.group() returns the entire
match (can also return a single group)

3/23/2021

17

Groups Example

a) What will this pattern match with?

\b(\w+)\b.*\b(\w+)\b

b) How do you enter this pattern in
Python?

→ "\\b(\\w+)\\b.*\\b(\\w+)\\b"

c) or with a raw string,

r"\b(\w+)\b.*\b(\w+)\b"

Groups Example 2

•Enter this function, then run it and print
the result:

3/23/2021

18

exercise

•Open file

"montcs.bloomu.edu/Datasets/Logfiles/error.log.1"

•Search for lines containing an IP address
- form is 4 groups of 1-3 digits, separated by a period

» e.g. 123.145.167.189 , or 172.16.0.201, or 8.8.8.8 …

•Collect the matched IP addresses into a list,
and also into a set

•When done, print the length of the list and the
length of the set
- Should be 1034 addresses in the list, and 230 in the
set

exercise part 2

•Collect the matched IP addresses into a
dictionary, whose values are the accessed files

•Should be 230 dictionary keys

•What IP tried to access to most files?

3/23/2021

19

Details of match_object.group()

•Method match_object.group() returns the
entire matched string

- match_object.group(0) also returns the matched
string

•Optional argument ≥ 1
specifies a parenthesized group
- groups are numbered left-to-right

- match_object.group(1) returns 1st (leftmost)
group, etc.

exercise

•Open file

"montcs.bloomu.edu/Datasets/Logfiles/error.log.1"

•Find lines that refer to "robots.txt"

•collect:
- IP addresses as keys to a dictionary

- timestamp of failed accesses

- number of attempts

•Go back in:
for collected IP addresses, collect lists of other
attempted accesses

3/23/2021

20

match_object.groups()

•Similar method match_object.groups() returns a
tuple of all parenthesized groups

•example:

.groups() Example, Elaborated

3/23/2021

21

What About Nested Parentheses?

Some More Details of Match Objects

match
object's
member:

description

mo.start() position (index) of beginning of match

mo.end() position of end of match

m.span() start & end positions of each group's match

mo.re
the regular expression that was used to make
the match

mo.string the original target string

mo.pos,
mo.endpos

starting & ending positions of search within
the target string

3/23/2021

22

exercise

•Open file

"montcs.bloomu.edu/Datasets/Logfiles/error.log.1"

•Search for lines containing an IP address
- form is 4 groups of 1-3 digits, separated by a period

» e.g. 123.145.167.189 , or 172.16.0.201, or 8.8.8.8 …

•Collect the matched IP addresses into a list,
and also into a set

•When done, print the length of the list and the
length of the set
- Should be 1034 addresses in the list, and 230 in the
set

More Regex Functions

•re.findall(), re.finditer() functions return
all matches of a pattern within a string,
as a list of match objects

•re.sub(), re.subn() functions substitute a
replacement substring for the matched
pattern in a target string

•re.split() splits a target string into
substrings separated by the pattern

•re.compile() : precompile a regex for
faster performance of repeated searches

3/23/2021

23

re.findall()

•The re.findall() function searches all non-
overlapping occurrences of the provided
pattern
- Returns a list of all matches

•The re.finditer() function acts like
re.findall(), but returns an iterator
instead of a list of matches
- An iterator is an object that provides each
discovered occurrence of the pattern, one at
a time – useful in "for" statements, etc.

- Iterators provide more efficiency

re.sub()

•The re.sub() function replaces pattern-
matches in a target string with a
replacment string
- Returns a modified string

- Replacement can be a string or a function

•The re.subn() function acts like re.sub(),
returns the number of substitutions
made as well as the modified string

3/23/2021

24

re.compile()

•The re.compile() function compiles a text
string that represents a regular
expression into a regex object

•Compiled regex objects include methods
.search(), .match(), .findall()/.finditer(),
.sub()/.subn()

•Regular expressions that are used
repeatedly are more efficient if compiled
once beforehand

exercise – anonymizing IP addresses

•Open file

"montcs.bloomu.edu/Datasets/Logfiles/error.log.1"

•Search for lines containing an IP address
- form is 4 groups of 1-3 digits, separated by a period

» e.g. 123.145.167.189 , or 172.16.0.201, or 8.8.8.8 …

•Replace every IP address with
"xxx.xxx.xxx.xxx"

•Write all lines to a new text file named
"error.log.2"
- Should be identical to the original file, except that all
IP addresses have been anonymized

